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We study dynamic responses of a set of globally coupled oscillators with randomly distributed fre-
quencies, which is, in the absence of external driving, known to exhibit a transition between the in-
coherent state and the coherent one with spontaneous synchronization. When each oscillator is driven
by periodic force, it displays the characteristic mode locking known as Shapiro steps. Under periodic
driving of randomly distributed strengths, the system as a whole is shown to exhibit periodic synchroni-
zation as well as transitions between the coherent and the incoherent states. The detailed behavior de-
pends on the characteristic strength of driving relative to the driving frequency.

PACS number(s): 05.45.+b, 87.10.+e¢, 05.70.Fh

I. INTRODUCTION

One of the remarkable features of various oscillatory
systems in physics, chemistry, and biology is the emer-
gence of coherent motion among their constituents,
which is called “collective synchronization” [1-7]. Such
self-organizing systems have been conveniently modeled
by sets of coupled nonlinear oscillators [1,8—-11], the sim-
ple class of which includes the globally coupled oscilla-
tors. Global coupling, which couples each oscillator to
all the others in the system, appears naturally in biologi-
cal and some physical systems [11]; in other systems with
local coupling, it may be regarded as the mean-field ap-
proximation. The ideal system in which all the (globally
coupled) oscillators are identical is known to be integra-
ble [12]. This is in contrast with the system of oscillators
with randomly distributed frequencies, which resembles
more closely real systems in nature. It was shown in such
a system that collective synchronization indeed sets in
gradually as the (global) coupling strength is increased
beyond the critical value, which is reminiscent of the
second-order phase transition in equilibrium [13].

In many cases, the oscillatory systems to be modeled
are not isolated and are subject to the external driving,
often periodic in time. At the simplest level, for example,
many biological systems are driven by the periodic cycles
of the planetary motion, say, daily and yearly, while in
the collective behavior of a society, one may consider the
role of external perturbations such as election, economic
crash, and war. In some cases, external periodic driving
such as microwaves [3], alternating currents [4], laser
beams [5], repetitive stimuli [7], etc., is applied explicitly
to the system. When a single oscillator is driven by
periodic force, it is well known to display the characteris-
tic mode locking, which is called the Shapiro steps partic-
ularly in the case of a Josephson junction [14]. In a two-
dimensional array of identical Josephson junctions, cou-
pled locally and driven by alternating currents, coherence
is also manifested by the so-called giant Shapiro steps
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[4,15]. On the other hand, the role of such external driv-
ing in a set of globally coupled oscillators with randomly
distributed natural frequencies has not been addressed, in
particular, with regard to the collective synchronization.
For example, one may ask how the driving changes the
onset of the collective synchronization and/or the nature
of the nonequilibrium transition between the incoherent
state and the coherent one.

This work investigates the dynamic response of a set of
globally coupled oscillators to the periodic external driv-
ing, with emphasis on the effects on the collective synch-
ronization. The results of our investigation can be sum-
marized as follows: When all the oscillators are driven
identically, the response of the whole system is rather
trivial, and does not affect the magnitude of synchroniza-
tion. This is to be contrasted with the case that each os-
cillator is driven by periodic force of different strength.
Under such periodic driving, each oscillator still displays
the appropriate Shapiro steps. Here, only oscillators
locked to the external driving contribute to the collective
synchronization of the whole system, which, for driving
with randomly distributed strengths, turns out to be
periodic in time. The detailed behavior of such periodic
synchronization depends on the characteristic strength of
driving relative to its frequency as well as the coupling
strength and the distribution of frequencies. In particu-
lar, the system under appropriate conditions can
be driven to display periodic synchronization-
desynchronization transitions, each of which can be ei-
ther continuous or discontinuous. Such periodic synch-
ronization might have been already observed in oscillato-
ry responses of neurons in a visual cortex [7].

This paper consists of five sections. Section II intro-
duces the system of driven oscillators with global
sinusoidal coupling, beginning with the simplest system:
two coupled oscillators under external periodic driving.
The two-oscillator system corresponds to a single Joseph-
son junction with an applied current, and for strong cou-
pling, displays phase locking or synchronization when
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driven identically. The absence of locking in the system
with weak coupling simply reflects the current-voltage
characteristic in the corresponding Josephson junction.
On the other hand, driving each oscillator with different
strength corresponds to applying an alternating current
to the Josephson junction, which leads to the well-known
Shapiro steps. We then present an N-oscillator system,
which can also be reduced to a single-oscillator system by
introducing a complex order parameter. While the case
of uniform driving is rather trivial, driving with nonuni-
form strength again yields mode locking and characteris-
tic Shapiro steps, depending on the order parameter.
Here, the order parameter, which describes the collective
synchronization of the system, is itself determined by
such locking. Thus, self-consistency is required (see Sec.
IID. Noting that only locked oscillators contribute to the
synchronization, we derive the self-consistency equation
for the order parameter, which displays a variety of bifur-
cation phenomena. In particular, the system is shown to
undergo a continuous or discontinuous transition be-
tween the incoherent and the coherent states as the cou-
pling strength is varied. In Sec. IV simple examples in
which the system is driven with simple strength distribu-
tion and with relatively high frequency are investigated in
detail to show periodic synchronization explicitly. Even
in those simple cases, the system exhibits rich behavior,
e.g., several continuous and discontinuous transitions
occurring periodically. Strong and low-frequency driving
tends to produce more complex oscillations. Finally, Sec.
V gives a brief discussion as well as a summary of the
main results. Their possible relevance to the observed
responses of cortical neurons is also discussed.

II. DRIVEN SYSTEM OF COUPLED OSCILLATORS

Consider a set of N oscillators, the ith of which is de-
scribed by its phase ¢; (i=1,2,...,N). The dynamics of
the system under periodic driving is governed by the cou-
pled first-order differential equations

. N
¢i=wi+licosﬂt—% >, sin(¢;,—¢;), (1)

i=1

where w; on the right-hand side is the natural frequency
of the ith oscillator, the second term denotes the external
driving, and the last term represents the global coupling
between the oscillators, with strength K /N. The natural
frequency w; is distributed over all of the oscillators ac-
cording to the distribution g(w), which is assumed to be
smooth and symmetric about w,. Without loss of gen-
erality, we may take @, to be zero, and we also assume
that g(w) is concave at =0, i.e., g'’(0) <0. The frequen-
cy Q of the driving is assumed to be uniform for all oscil-
lators, while the strength I; may vary for different oscilla-
tors. In the absence of the driving term, Eq. (1) describes
the standard system of coupled oscillators, which has
been studied extensively [1,13]: When the interactions
are negligible, each oscillator evolves with its own natural
frequency, leading to the incoherent state; interactions,
on the other hand, tend to lock oscillators and to develop
coherent motion. Thus the competition between the two
terms determines whether the system will evolve toward
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collective synchronization. In Eq. (1) the external driving
described by the second term provides an additional
source for the competition, which is expected to play a
crucial role in the synchronization of the system.

To gain some insight into the effects of driving, we first
consider the simple case of two coupled oscillators
(N =2), which is described by the two coupled equations
cﬁ1=w1+llcosﬂt—g—sin(qbl——qﬁz) ,

)

dry=w,+I,cosQt — —Izgsin(q&z—cbl) .

The above two equations can be trivially decoupled by
defining the relative phase ¢=¢,—¢,. The equation of
motion for ¢ reads

é+K sing=w+1 cosQt , (3)

where w =, —w, denotes the relative (natural) frequency
and I=1I,—1, represents the difference in the driving
strength. We now consider two cases.

First, when the two oscillators are driven by the same
driving (I,=1,), Eq. (3) becomes time independent and
easy to analyze: It corresponds to a pendulum with a
constant torque or a single resistively shunted Josephson
junction with an applied direct (dc) current w (in reduced
units). Here two types of solutions exist depending on
the coupling strength, as follows.

(i) @ =K. In this case the coupling is strong enough to
drive the system to the fixed point given by
¢=sinv1(a)/K). Thus we have the stationary solution,
where the two oscillators are phase locked to each other
due to the coupling

§
¢1=E)t+ﬁLsith+¢0 ,

¢2=¢1_Sin_l% ’
with the mean frequency ®=(w,+w®,)/2 and an arbitrary
constant ¢;.

(ii) ®> K. Here the coupling loses in the competition
with the natural frequency, and the system does not pos-
sess a fixed point: ¢ increases continuously, and the two
oscillators are not phase locked to each other. The aver-
age rate of increase is simply given by (¢)=V w’—K?,
leading to the (dc) current-voltage characteristic in the
case of a Josephson junction [16]. Thus, in general
(¢)/Q is irrational, and the system is not locked to the
external driving, either.

Second, when each oscillator is driven with different
strength (I,71,), I cosQt in Eq. (3) corresponds to an al-
ternating current applied to the junction. Thus we have a
resistively shunted Josephson junction driven by a com-
bined direct and alternating current. It is well known
that such a system can be locked to the external driving,
which is characterized by the Shapiro steps [14]

-(—g—)=n R 4)

with » integer. On the nth step, the (locked) phase of the
oscillator is given by
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p~nQt+ —ésinﬂt +4o (5)

where higher harmonics have been disregarded [17].
Note here that Eq. (5) does not depend on the coupling K
explicitly. The coupling strength determines the constant
¢, according to

0=nQ+(—1)"KJ,(I/Q)sind, ,

where J, is the nth Bessel function. Thus the half-width
of the step is given by |J,(I/Q)|, as is well known. Off
the step, the oscillator is unlocked and its phase is, again
with higher harmonics disregarded,

¢zwt+ésin9t +¢°, (6)
where ¢° is a constant independent of w.

We now return to the set of N oscillators described by
Eq. (1). Collective synchronization of such an N-
oscillator system is conveniently described by the com-
plex order parameter [13]

1 X s,
_ ¢
N %
=Ae'?, ™

where nonvanishing ¥ indicates the appearance of synch-
ronization. In the absence of driving, the order parame-
ter is time independent; in the driven system, on the other
hand, the magnitude A and the phase 6 of the order pa-
rameter may depend on time.

We first consider the case of uniform driving, not only
in frequency but also in strength (I;=I), and define
$;=¢,—(I/Q)sinQt. In terms of the new variables, Eq.
(1) takes the form

< K X -

$;=w;—— 3 sin(¢;—¢;), ®)

N 2

where the driving term has been removed. Thus
we have the canonical system of coupled oscillators
[13,18], for which the appropriate order parameter
W=(1/N)3 exp(i$;) is known to vanish if the coupling
is weak, K <K =2/7g(0). (For a detailed discussion on
the stability of this null solution, see Ref. [18].) As the
coupling increases beyond K, this null solution becomes
unstable and a nonvanishing solution ¥=2A¢? appears,
signaling synchronization of the system. Here, the mag-
nitude A grows as (K —K,)? with exponent B=3, which
coincides with the mean-field value in equilibrium phase
transitions. The phase 8 is an arbitrary constant,
reflecting the U(1) symmetry of the system. The order
parameter ¥ in terms of the original variables is simply
given by

Y =exp L 4

iésinﬂt
=32Jn(1/ﬂ)ei(nﬂt+0) , (9)
n

which has harmonic components rotating on the complex
plane.
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We next consider the system under driving with
nonuniform strength, where I; is randomly distributed,
again symmetrically about zero. The order parameter
defined in Eq. (7) still allows us to reduce Eq. (1) into a
single decoupled equation,

where A and 6 are to be determined by imposing self-
consistency. We then seek the stationary solution with
constant 6, which is possible due to the symmetry of the
distributions of ; and I; about zero. Redefining ¢; —6 as
¢, and suppressing indices for simplicity, we obtain

é+KAsing=w+1I cosQt , (10)

which is essentially the same as Eq. (3). Thus, those oscil-
lators of frequency in the range

nQ—KA|J,(I/Q) 20<nQ+KA|J,(I/Q)|, 11

with integer n, which will be denoted by the notation
®€ES,, are locked to the external driving, and their
phases in the stationary state are described by Eq. (5),
with ¢, given by

o—nd

—(—1)ein—1
o=(=1’sin o T /)

. (12)

Oscillators of frequency outside the intervals given by Eq.
(11) (&S, for any integer n) are unlocked and are de-
scribed by Eq. (6).

III. SELF-CONSISTENCY EQUATION
FOR THE ORDER PARAMETER

In this section we compute the order parameter, for
which self-consistency is imposed. We thus derive the
equation for the order parameter, which determines the
collective behavior of the system. Suppose that the driv-
ing strength I is distributed according to f(I), indepen-
dently of the frequency w. Recalling that ¢ in Eq. (10) in
fact represent ¢ —6, we have the self-consistency equa-
tion

1 i,
A:— J
N2¢
=[Tdlfn 7 doglw)e®),,, (13)
where  --- ), denotes the average in the stationary

state with @ and I given. For locked oscillators of fre-
quency @ €S, Egs. (5) and (12) lead straightforwardly to

(e®), =exp |i |nQt+ ésinﬂt

X[V1—x2+i(—1)*x],
where
x=(0—nQ)/KAJ,(I1/Q) .

Unlocked oscillators, on the other hand, have their
stationary-state phases in uniform distribution. [Recall
that Eq. (6) is essentially the solution of Eq. (3) without
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coupling (K =0). It is easy to see that the corresponding
Fokker-Planck equation [19] has the uniform distribution
of the phase as its stationary solution.] Therefore, in gen-
eral they do not contribute to the collective synchroniza-
tion of the system. Equation (13) thus becomes

I
i~ sinQt
IQSIII

X 3 explinQt] [ © dI £(1)J],(1/Q)

A=KAexp

x [ dxg(nQ+KAT,I/Q)x]
X[V1—x2+i(—1)x],

which consists of contributions from all locked oscilla-
tors. Assuming KA <<1 near the transition to the
coherent state, we expand g[nQ+KAJ,(I/Q)x ] around
n{}, make use of the symmetry of g(w) and f(I), and ob-
tain

A=aKA—b(KA)Y—c(KA)P+O(KA), (14)
with
a E%g(O)(JO(I)cos(I sint) )

+7 ¥ {g(2nQ)cos2nt (J,,(I)cos(I sint) )

n=1
—g[(2n—1)Q]sin(2n —1)2
X {Jp, —1(Dsin(I sint))} ,

b=%3 (—1)"g'(nQ)sinnt (J}(I)cos(I sint)) , (15)

——;1 3 {g"(2nQ)cos2nt(J3, (I)cos(] sint))

n=1
—g"[(2n —1)Q]sin(2n — 1)t
X {J3, _(Dsin(I sint))} ,

where (X)= [dI f(I)X and, for convenience, I and ¢
have been rescaled in units of Q and Q ™!, respectively.

It is obvious that Eq. (14) has all coefficients real, al-
lowing real solutions for A. Since the coefficients given
by Eq. (15) are periodic in time, A should be also periodic
in time. Thus we indeed have the order parameter in the
form W=Ae’® with time-dependent A and arbitrary con-
stant 6, which we have been seeking. As a check, we may
also consider the system without driving, where
fI)=8(I). In this trivial case the coefficients given by
Eq. (15) simply become

b=0, c=—--g"(0), 16
c 168 (0) (16)
and, as expected, Eq. (14) reduces precisely to the self-
consistency equation obtained in Ref. [13].
The collective response of the system for given values
of a, b, and c (at a given time) can in principle be obtained

=T
a= 2g(O) ,

by solving Eq. (14), which yields, in addition to the null

solution A=0, nontrivial solutions:

—bK+V (b2+4ca)K*—4cK
2cK?

A=A,

If

, (17
if
K=K =4c/(b*+4ca) .

For simplicity, we assume that both a and c are greater
than zero, while b can be of either sign.

When b=0, only the null solution is possible for
K <K,=a"!, as shown in Fig. 1(a). As K increases
beyond K., however, the null solution becomes unstable
and the nontrivial solution A, appears, as displayed in
Fig. 1(c). Figure 2(a) shows the emergence of the non-
trivial solution via a pitchfork bifurcation [20]. It
subsequently grows in a continuous manner as
@?/V'e XK —K,)'2. For b >0, the null solution is still
the physical solution for K <K_; it loses its stability to
the nontrivial solution A, via a transcritical bifurcation
[20] at K=K_,. Near K, the latter, which originates
from the unphysical (negative) solution generated via a
tangent bifurcation [20] at K=K, grows linearly as
(@®/b)(K —K,) [see Figs. 1 and 2(b)]. Thus, the system
for b 20 may be regarded as displaying a second-order
phase transition into the coherent state as the coupling is
increased beyond K.

The case b <0 is even more interesting, as shown in
Figs. 3 and 4: For K <K, only the null solution exists,
while the stable nontrivial solution A, (together with the
unstable solution A _) appears via a tangent bifurcation at
K=K,. The null solution then loses its stability to A_
via a transcritical bifurcation at K=K, . Thus only the
nontrivial solution A, is stable for K >K_ (the other
solution A_ becomes negative). For K, <K <K, on the
other hand, both the null solution and the nontrivial solu-
tion A, are possible, with different basins of attraction.
In this bistability region, as K approaches K, (from
above), the nontrivial solution takes the form

_ 1bl(b?+4ca) | (b+4ca)’

A
* 8¢? 32¢3

(K—K)'?,

while, as K approaches K, it becomes

AL~ alb|

3

a
+—(K—K,) .

|b]

(a) (b) (c)

FIG. 1. Graphical solution of Eq. (13) for b =0, with (a)
K <K,, (b) Ko <K <K_, and (c) K > K. The negative solutions
appearing in (b) and (c) are not physical. Note also that K,
coincides with K, for b =0.
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A +
A=0 K
K c
(a)
A,
A0 —————— K
K

c

(b)

FIG. 2. Bifurcation diagram for (a) 5=0 and (b) b >0, where
the solid and dashed lines represent stable and unstable solu-
tions, respectively. (a) shows a pitchfork bifurcation at K =K,
while (b) describes a transcritical bifurcation. The tangent bi-
furcation at K, producing a pair of unphysical (negative) solu-
tions is not drawn in (b).

As K is increased from zero, the system, which starts in
the incoherent state, remains incoherent even if K grows
beyond K. As K is increased further to K, however, the
basin of attraction for the null solution shrinks to zero,
driving the system into the coherent state described by
the nontrivial solution. Thus, the system exhibits a first-
order phase transition at K =K, into the coherent state,
with the jump A,=|b|/cK, in the order parameter A.
Conversely, when K is decreased below K, the system is
still in the basin of attraction for the nontrivial solution,
which shrinks to zero if K is decreased further to K.
Accordingly, the transition into the incoherent state
occurs at K=K, with the jump A,=|b|/2cK,, and in
this manner the system displays hysteresis as the coupling
strength is varied. Here, the expressions for the jumps A,
and A, in the order parameter are accurate only if
|b| <<c; otherwise, the assumption KA <<1 is not valid,
and higher-order terms become relevant. It has been fur-
ther assumed that b2 < 2ca.

Other cases in which a and/or ¢ are negative can also
be investigated. The general features are similar, and will
not be discussed here. One additional feature is that
there exist ranges of parameters in which neither the null

() () ©)

FIG. 3. Graphical solution of Eq. (13) for b <0, with (a)
K <K, (b) Ky<K <K, and (c) K>K,.. In (b), both the null
solution and the nontrivial solution A, are stable.
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FIG. 4. Bifurcation diagram for b <0. A pair of the stable
solution A and the unstable one A_ appears via the tangent bi-
furcation at K; the latter exchanges stability with the null solu-
tion via the transcritical bifurcation at K, and becomes unphys-
ical. The dotted lines indicate the jumps in the order parameter.

solution nor A, are stable. This indicates that the
present analysis which considers up to the cubic term is
insufficient and higher-order terms should be retained;
they in general yield a nontrivial stable solution A.

IV. PERIODIC SYNCHRONIZATION

In our system the coupling KX is in general fixed and un-
controllable. Instead, K, and K, change with time due to
the (periodic) time dependence of a, b, and c, the explicit
form of which can be obtained by Eq. (15) for given dis-
tributions g(w) and f(I). In this section we suppose that
the oscillators have their natural frequencies distributed
in the interval [ —w;,0,], i.e., g(@)70 only for || <®,,
and examine simple cases to show periodic synchroniza-
tion explicitly.

We first consider higher-frequency driving such that
Q> ,. This is the simplest driven system, in which lock-
ing is possible only for n =0. Equation (15) then yields

a=(m/2)g(0){Jy(Isint)) ,
b=0,
and
c=—(m/16)g"(0){J3(I)cos(I sint)) .

To proceed further, we need the explicit form of the dis-
tribution f(I), and for simplicity we will mainly consider
a tI-type distribution,

FD=18(I—Io)+8(I+1,)] . (18)

A broad distribution, e.g., a Gaussian, can also be con-
sidered, but the characteristic features such as periodic
synchronization are largely similar. With the above +I
distribution, we have

a= %g(O)JO(Io )cos(Iysint) ,

b=0, (19)

c=— —1’% "(0)J3(Iy)cos(Iysint) ,
and the collective response of the system depends on I,
the driving strength relative to the driving frequency.
(Recall that I, has been defined in units of (2. In the case
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of a Gaussian distribution, I, corresponds to the root-
mean-square value of the driving strength.) For weak
driving (I, <7/2), a as well as c¢ is always greater than
zero, reaching its maximum

@ ax = (7/2)8(0) (1)
and minimum
@ min E(ﬂ'/z)g(o)-]o(lo )COSIO

periodically. Since the nontrivial solution exists only for
K >K,(=a™"), we find that for K <KM"=q ]}, the sys-
tem is always incoherent (A =0), while it is always in the
coherent state, displaying nonzero synchronization
(A=A,), for K>KM™*=g_1 Note that A, itself is
periodic in time due to the periodicity of a and b. Figure
5(a) shows the periodic synchronization of period /{0
(recall that ¢ has been defined in units of Q™) displayed
by the system in this case. For intermediate couplings
(KM <K <K®), we have K <K_ for periodic intervals
of time, while K > K for the rest of the time, and the sys-
tem oscillates between the two states: A=0 for

nr+t. <t<(n+1)mr—t,

and A=A, for nw—t <t<nw+t, where I,
(€[0,7/2]) has been defined by the relation K (¢.)=K
or a(t,)K =1. Here, it is simply given by

t,=sin"{I5cos™'[2/mg(0)KJ(I,)]} .

Again, A, is periodic, and in particular, vanishes at time
t=nm=xt.. Therefore, the order parameter A is a con-
tinuous (periodic) function of time, and the system exhib-
its continuous transitions periodically between the
coherent and incoherent states, as shown schematically in
Fig. 5(b). When the driving gets stronger such that
w/2 <1, <3m/2, the general behavior of the system does
not change for K <K, ie., A is always zero for
K <K™n while it oscillates between zero and A, for

0 T 2n
(a)
A
, \ I
T
-te 0 te -t W Wt 2n-te 2n

FIG. 5. Schematic diagram of the periodic synchronization
for Q> w;, with (a) K > K and (b) K" <K <K[**. (b) exhib-
its continuous synchronization-desynchronization transitions.

K™Mn <K <K™* For K >K™>, on the other hand, the
system displays oscillation whose cycle consists of two
coherent states separated by two incoherent states. It
then undergoes four synchronization-desynchronization
transitions in a cycle. Even stronger driving leads to
more complex oscillations in the synchronization of the
system.

We next consider driving with lower frequency such
that Q <w,<2Q, where locking is possible for n=1 in
addition to n =0. For the I distribution in Eq. (18), Eq.
(15) reduces to

a= %g(O)JO(IO Jcos(I,sint)

—7g(Q)J,(Iy)sin(I,sint )sint ,
b=—4g'(Q)J3(Iy)cos(Iysint )sint , (20)

c=— 1—7T6g”(0)18(10 )cos(Iysint )

+ %g"( Q)J3 (I, )sin(Iysint )sint

which lead to a variety of oscillatory behavior (of period
27 /) depending on the ranges of parameters. For ex-
ample, in the simplest case of weak driving (I, <m/2)
such that

amin5(7/2)g(0).]0(10 )COSIO—TI'g(Q)J](IO )Sln10>0

and ¢ >0, typical responses of the system are as follows:
For K <K™" (=q_l), the system remains incoherent
(A=0). [Here the expression of a,, =a(t=0) is the
same as before.] For KM"<K <KT* where KT
denotes the maximum value of K, [=4c/ (b%+4ca), as
defined in Sec. III, with a, b, and ¢ given by Eq. (20)], the
typical behavior of the order parameter A is shown
schematically in Fig. 6(a). Since a(t=0)K > 1, the order
parameter evolves from finite A, at t=0 and decreases

!A

A

2N

\
- T T T —— t
0 te -t 3n/2 2n+te

(b)

FIG. 6. Schematic diagram of the periodic synchronization
for Q<©,<2Q, with (@ KM<K<K$* and (b)
KP** <K <K™>* (a) shows discontinuous as well as continuous
transitions, while (b) displays only continuous transitions.
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continuously with time, reaching zero at t=t,, where
a(t,)K =1. It stays at zero until t =7—1,_, when it begins
to increase, going back to A_.. Then it jumps down to
zero at t =m+t,, where t, (E[0,7/2]) is determined by
the relation K y(ty) =K, with discontinuity

Ao(t=1r+t0)=b(t0)/26(to)K .

The order parameter eventually jumps back to A, at
t =27 —t, again with discontinuity

A (t=2m—t )=b(t,)/c(t,)K ,

completing one cycle. Thus, the system displays four
synchronization-desynchronization transitions in a cycle.
Of the four transitions, two are continuous, while the
remaining two are discontinuous. As the coupling is in-
creased further so that K§** <K <K, the order pa-
rameter oscillates between zero and A, in a continuous
manner, which is displayed in Fig. 6(b). Finally, for
K > K, the system always remains coherent (A=A ),
displaying simple periodic synchronization. For other
ranges of parameters, in particular, for stronger driving,
there appear more complex oscillations composed of
many transitions per cycle. For example, when I is in-
creased beyond /2, the system with strong coupling
(K > K can exhibit eight transitions in a cycle.

V. CONCLUSIONS

We have studied dynamic responses of a set of globally
coupled oscillators with randomly distributed natural fre-
quencies, which are conveniently described by introduc-
ing a complex order parameter. When all the oscillators
are driven identically, the response of the whole system
has been shown to be rather trivial, and does not affect
the magnitude of synchronization. This is to be contrast-
ed with the case in which each oscillator is driven by
periodic force of randomly distributed strength. Under
such driving, each oscillator still displays the appropriate
Shapiro steps, and only oscillators locked to the external
driving contribute to the collective synchronization of the
whole system. The self-consistency condition then gives
the equation for the order parameter, which in turn leads
to the possibility of collective synchronization that is
periodic in time. The detailed behavior of such periodic
synchronization has been shown to depend on the charac-
teristic driving strength relative to the driving frequency
as well as the coupling strength and the distribution of
natural frequencies. In particular, strong driving with
frequency low compared to the width of the natural fre-
quency distribution tends to yield complex responses
such as periodic transitions between the coherent and in-
coherent states; some of the transitions may be discon-
tinuous, while others are continuous.

This periodic synchronization might be of relevance to
the interesting oscillatory responses of cortical neurons
reported recently [7], where oscillations of the phase
difference between the two ‘“locked” signals have been
observed within a single stimulus period. When the two
signals have zero phase difference, they are indeed syn-
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chronized and contribute to the order parameter defined
in Eq. (7). Two signals which are out of phase (i.e., with
phase difference ), on the other hand, do not contribute
to the order parameter. Correspondingly, the oscillation
of the phase difference leads to the periodic variation of
the order parameter, which indicates that the system ap-
pears to display periodic synchronization.

It should be stressed that the analytical tractability of
this study stems from the global coupling, i.e., the mean-
field nature of the system, which allows us to reduce the
set of N coupled equations into a single equation for the
order parameter. A single first-order differential equation
in the form of Eq. (10) is well known to produce only in-
teger Shapiro steps given by Eq. (4), and the correspond-
ing locked oscillators in turn determine the collective
synchronization of the system. In a system of locally
coupled oscillators, on the other hand, such a reduction is
in general unattainable except in the ideal system of iden-
tical oscillators; the coupled equations describing the
latter can also be reduced to a single equation in the form
of Eq. (3) by symmetry consideration. Accordingly, a
two-dimensional array of identical Josephson junctions,
driven by external currents, displays only integer Shapiro
steps unless a magnetic field is applied [4,15]. Here, an
applied magnetic field introduces “frustration” to the sys-
tem, allowing reduction into a few coupled equations
(again by symmetry) rather than into a single equation.
Thus, the arrays of identical junctions in magnetic fields
as well as those of dissimilar junctions (without magnetic
fields) are described by sets of coupled equations, where
different characteristic frequencies coexist, and can ex-
hibit both integer and fractional steps [4,15]. Further,
evidence for steps at every rational, which is suggestive of
devil’s staircase structure, has been reported in such sys-
tems [21]. It would then be of great interest to investi-
gate the behavior of collective synchronization in those
systems displaying fractional steps and, in particular,
devil’s staircase structure. Such structure presumably
tends to suppress collective synchronization, but ap-
parently leads to the possibility of complex behavior such
as chaos in extended systems. Note here that the sim-
plest case of two coupled equations may be expressed as a
second-order differential equation, which describes, e.g., a
Josephson junction with nonvanishing capacitance. In
the appropriate regime, the corresponding Poincaré re-
turn map reduces essentially to the circle map, which is
indeed known to display rich behavior including a devil’s
staircase and chaos [22,23]. This might be helpful in un-
derstanding the effects of fractional locking on collective
synchronization, the detailed investigation of which is
left for further study.
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